All posts by Admin

From Complex Feedstocks to New Processes: The Role of the Newly Developed Micro-Reactors

Pilot plant reactors offer very important advantages in testing operating conditions such as temperature, pressure, residence time, catalyst to feed ratio, instrumentation and so on. However, such units are very costly when used, for example, for catalyst and feedstock screening tests where many tests are required to find out the effect of new formulations on product yield under different operating conditions. Micro-reactors are, on the other hand, ideal equipment for such purposes as with such systems running an operation is not expensive, performing a test does not take significant time, switching from an operating condition to one another is rather quick and above all, mass of required catalyst and feedstock is small i.e. in the order of grams. Therefore, considerable time and cost are saved through running tests in the small-scale reactors.

PEARL members Dr. Said Samih, Dr. Mohammad Latifi, Dr. Sherif Farag and Prof. Jamal Chaouki reviewed some state-of-the-art micro-reactors that they have developed and commissioned at PEARL in the Journal of Chemical Engineering and Processing- Process Intensification.  

New Approach for Analyzing Rare Earth Elements (REE) Developed by PEARL members

Dr. Cornelia Chilan from the Physics-Engineering Department and Pearl members Maryam Abdollahi Neisiani, Dr. Mohammad Latifi, Prof. Jamal Chaouki developed a new approach for analyzing rare earth elements (REE) in high content mineral matrices by Neutron Activation Analysis (NAA). 

REE k0 and Q0 values, spectral interferences and nuclear interferences were experimentally evaluated and improved with Alfa Aesar Specpure Plasma Standard 1000 mg kg-1 mono-rare earth solutions. The new iterative gamma-ray self-attenuation and neutron self-shielding methods were investigated with powder standards prepared from 100 mg of 99.9% Alfa Aesar mono rare earth oxide diluted with silica oxide. The overall performance of the new k0-NAA method for REEs was validated using a certified reference material (CRM) from Canadian Certified Reference Materials Project (REE-2). The REE concentration was determined with an uncertainty below 7% (at 95% confidence level) and proved good consistency with the CRM certified concentrations.

Check it out in The International Journal of Pure and Applied Analytical Chemistry (Talanta)

Professor Jamal Chaouki Selected As The Best Chemical Engineering Researcher in Canada

Professor Jamal Chaouki, the head of PEARL, won the  Jane Memorial Award 2018 due to his exceptional achievements to the field of chemical engineering and industrial chemistry. This is the CSChE’s highest award, sponsored by the Canadian Society for Chemical Engineering.

He is full professor from 1995 at Ecole Polytechnique of Montréal. He has supervised more than 80 Ph.D. and Master Students and more than 40 post-docs. The main areas of his current research are process extrapolation, developing processes from waste and biomass to heat & power, fuels and chemicals. He has co-authored 6 books, published more than 400 reviewed articles in refereed journals and reviewed proceedings, more than 450 other scientific articles, and more than 17 patents.

Congratulations to Professor Jamal Chaouki on receiving the 2018 R. S. Jane Memorial Award!

Fluidization XVI Conference : May 26-31, 2019

The next Fluidization Conference, Fluidization XVI, will be held in China on May 26-31 2019. This conference aims to gather students, professors, and world-renowned experts in the field from both academia and industry. Following the successful 2016 conference, the top selected abstracts will be invited to submit a full paper in Powder Technology Journal as a special issue of this conference, which is expected to be published by the end of 2019.

In this conference, Professor Jamal Chaouki, the head of PEARL, has been invited to give a plenary speech. In his talk, he will be presenting the most recent research findings in the filed from PEARL.

Students and researchers can submit their abstracts until October 31, 2018, in different areas such as fundamentals of fluidization, modeling and simulation, fluidized bed applications, and fluidization in nature.

A Novel Technique to Measure Kinetic Parameters of Pyrolysis and Gasification Reactions

Said Samih and Jamal Chaouki have recently published a research article in the Canadian Journal of Chemical Engineering. The developed Fluidized Bed Thermogravimetric Analyzer (FB-TGA) in PEARL group was employed to investigate the pyrolysis and gasification of coal. Syngas (a mixture of CO and H2) was produced from such a complex feedstock, and novel kinetic parameters were predicted. Five grams of coal was gasified without observing a diffusion control step. In contrary to the conventional TGAs, the thermocouple of the FB-TGA measured the direct temperature of the reaction in this work, and consequently, the temperature gradient was eliminated. This unique technique allows the development of novel kinetic parameters from the FB-TGA for both pyrolysis and gasification reactions.

This article is accessible from here.

Link of the article :


WCCE 2017

October 1-5, 2017: 10th World Congress of Chemical Engineering

Every year hundreds of chemical engineers from universities, institutes, and industries from all over the world gather under the world congress of chemical engineering to share their experience and cutting edge technologies in this field. This year, the 10th World Congress of Chemical Engineering, and its joint events, will be held simultaneously with the 11th European Congress of Chemical Engineering and the 4th European Congress of Applied Biotechnology (WCCE10+ECCE11+ECAB4). This “three in one” congress, taking place in Barcelona-Spain, provides a unique opportunity for chemical engineers to meet with researchers and specialists in all areas of chemical engineering and to boost their strategy for the development of innovative processes that will be crucial for the future of industries.

CSChE 2017

October 22-25, 2017 : 67th Canadian Chemical Engineering Conference

CSChE 2017 conference is going to be held in Edmonton, Alberta this year with theme of “Chemical Engineering – Future Solutions”. More than 200 presentation, posters, and several workshops will be presented during this three day conference. In line with the conference theme, the organizers have arranged a series of workshops, and industry tours to raise the awareness of the opportunities available to the chemical engineers of tomorrow. Also, there will be a symposia session in memory of Khaled Belkacemi, and also honorary symposium in recognition of Archie Hamielec, Harmon Ray, and Charles Cozewith for their outstanding contributions in polymer reaction engineering.

Christine Beaulieu, El-Mahdi Lakhdissi, and Hamed Nasri, three members of Pearl, will present their recent acheivements at the CSChE 2017.

The Canadian Society for Chemical Engineering (CSChE), incorporated in 1966, is a national technical association representing the field of chemical engineering and the interests of Chemical Engineers in the industry, academia, and government. 

Three Minute Thesis Prize Won by PEARL Ph.D. Candidate

Mohamed Khalil, PhD Candidate – Chemical Engineering Department, École Polytechnique de Montréal, working under the supervision of Prof. Jamal Chaouki and Prof. Jean-Philippe Harvey, won the 1st place in Polytechnique Montréal’ Ma thèse en 180 secondes / Three Minute Thesis competition (Francophone) and the 2nd place (Anglophone). He’ll represent Polytechnique at the provincial finals organized by the ACFAS Association francophone pour le savoir, that will be held on May 4, 2017 at McGill University.

A New Research Article Published on Performance Evaluation of Different Approaches for Early Detection of Defluidization

Jaber Shabanian, Pierre Sauriol, Navid Mostoufi, and Jamal Chaouki has recently published a research article in the Powder Technology. The performance of different approaches for the early detection of defluidization in a high temperature bubbling gas-solid fluidized bed and their robustness with respect to the changes in superficial gas velocity, operating temperature, and bed inventory were compared in this study. The results showed that the novel approach proposed by Shabanian et al. 2015 (Procedia Eng. 102 (2015) 1006-1015), which employs the idea of simultaneous monitoring of temperature and in-bed differential pressure signals, with the detection thresholds introduced by Shabanian et al. 2017 (Chem. Eng. J. 133 (2017) 144-156) provides the best performance.

Click to read the article

Abstract of the article is provided below:

Identifying the onset of an agglomeration phenomenon at an early stage in processes utilizing gas-solid fluidized beds that operate under the influence of cohesive interparticle forces affords enough time to apply counteractive strategies and avoid a disastrous agglomeration of particles potentially leading to complete bed defluidization. In this paper, we compare the performance of different leading approaches proposed in the open literature for the advanced detection of defluidization. The approaches include the single-signal-monitoring of evolutions of total bed pressure drop, standard deviation of pressure signals, or -value from the attractor comparison analysis as well as the simultaneous-monitoring of temperature and in-bed differential pressure signals during the process. The results show that the simultaneous-monitoring of temperature and in-bed differential pressure signals provided the best prediction of the onset of agglomeration while it demonstrated the least sensitivity to the changes in gas velocity, operating temperature, and bed inventory.




A New Review Article Published on Effects of Temperature, Pressure, and Interparticle Forces on the Hydrodynamics of Gas-Solid Fluidized Bed

Jaber Shabanian and Jamal Chaouki has recently published a review article in the Chemical Engineering Journal. This review addresses the effects of operating temperature and pressure and interparticle forces on the gas-solid fluidization of a wide spectrum of powders that behave like Geldart groups A, B, and D powders at ambient conditions.

Click to read the article

Abstract of the article is provided below:

An in-depth examination of the hydrodynamics of gas-solid fluidized beds at high temperature and pressure is critical for their design and operation owing to the global trend of processing lower quality feedstocks, e.g., high ash content coal, biomass, and waste, in these units. Current knowledge on gas-solid fluidization, though, refers to ambient conditions and the hydrodynamic models based on these conditions by merely changing the gas properties, i.e., its density and viscosity, are generally employed to estimate the overall performance of gas-solid fluidized bed processes under extreme conditions. This strategy, however, overlooks possible modifications induced by the operating conditions on the structure and dynamics of fluidized particles, i.e., the level of interparticle forces. With the development of new processes adopting gas-solid fluidized beds under extreme conditions, a comprehensive review of the experimental and simulation studies of gas-solid fluidization at elevated temperatures and pressures and in the presence of interparticle forces is warranted. This review addresses the effects of temperature, pressure, and interparticle forces on the fluidization characteristics of gas-solid fluidized beds for a wide spectrum of particle systems, ranging from Geldart groups A, B, and D classifications, refer to the fluidization behavior at ambient conditions.